Sorption–Desorption of Imazamox and 2,4-DB in Acidic Mediterranean Agricultural Soils and Herbicide Impact on Culturable Bacterial Populations and Functional Diversity

Author:

Pinna Maria V.ORCID,Castaldi Paola,Garau Matteo,Bianco AngelaORCID,Multineddu Chiara,Cesarani AlbertoORCID,Sitzia MariaORCID,Diquattro StefaniaORCID,Mangia Nicoletta P.ORCID,Garau GiovanniORCID

Abstract

In this study, we investigated the sorption–desorption behavior of imazamox (IMZ) and 2,4-DB (DB) in two typical acidic Mediterranean agricultural soils and the impact of these herbicides on culturable soil bacterial populations, enzyme activities and functional diversity when applied at concentrations higher than recommended doses (10×, 50×, 500×). Herbicide sorption was similar in both soils and IMZ was less retained compared to DB (~0.5 vs. 40 µg g−1 soil, respectively). IMZ desorption was remarkable (70–100%) while that of DB was more limited, i.e., ~40%. Three days after spiking (DAS), IMZ and DB significantly increased the number of soil-culturable heterotrophic bacteria, actinomycetes and Pseudomonas spp., soil respiration and the potential catabolic capacity of soil microbial communities. Soil dehydrogenase activity increased by ~56–70% in IMZ-treated soils while being reduced by ~33–41% in DB-treated ones. β-glucosidase activity showed a soil-dependent behavior, while the pattern of C source utilization suggested a change of soil microbial community structure after herbicide (especially DB) spiking. At 30 DAS, the herbicides’ impact on soil microorganisms, enzyme activity and functional diversity was still visible. Moreover, a toxic effect of DB (at 50× and 500×), but not IMZ, was recorded vs. Rhizobium sullae, the bacterial symbiont of Hedysarum coronarium. The obtained results indicated that IMZ and DB are poorly sorbed and highly desorbed by both soils. Moreover, at the tested concentrations, IMZ and DB can have short- and medium-term impacts on the microbial component and the related activity of the investigated soils, likely affecting a range of ecosystem services provided by soil microorganisms.

Funder

Regione Sardegna “Progetto Strategico del Sulcis”

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3