Approach of AI-Based Automatic Climate Control in White Button Mushroom Growing Hall

Author:

Barauskas RimantasORCID,Kriščiūnas Andrius,Čalnerytė DaliaORCID,Pilipavičius Paulius,Fyleris TautvydasORCID,Daniulaitis Vytautas,Mikalauskis Robertas

Abstract

Automatic climate management enables us to reduce repetitive work and share knowledge of different experts. An artificial intelligence-based layer to manage climate in white button mushroom growing hall was presented in this article. It combines visual data, climate data collected by sensors, and technologists’ actions taken to manage climate in the mushroom growing hall. The layer employs visual data analysis methods (morphological analysis, Fourier analysis, convolutional neural networks) to extract indicators, such as the percentage of mycelium coverage and number of pins of different size per area unit. These indicators are used to generate time series that represent the dynamics of the mushroom growing process. The incorporation of time synchronized indicators obtained from visual data with monitored climate indicators and technologists’ actions allows for the application of a supervised learning decision making model to automatically define necessary climate changes. Whereas managed climate parameters and visual indicators depend on the mushroom production stage, three different models were created to correspond the incubation, shock, and fruiting stage of the mushroom production process (using decision trees, K-nearest neighbors’ method). An analysis of the results showed that trends of the selected visual indicators remain similar during different cultivations. Thus, the created decision-making models allow for the definition of the majority of the cases in which the climate change or transition between the growing stages is needed.

Funder

UAB „Baltic Champs“, UAB „Aksonas“

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3