Florpyrauxifen-Benzyl Selectivity to Rice

Author:

Velásquez Juan CamiloORCID,Bundt Angela Das Cas,Camargo Edinalvo Rabaioli,Andres André,Viana Vívian EbelingORCID,Hoyos VerónicaORCID,Plaza GuidoORCID,de Avila Luis AntonioORCID

Abstract

Florpyrauxifen-benzyl (FPB) is a new class of auxinic herbicide developed for selective weed control in rice. This study aimed to evaluate the effect of environmental conditions, P450 inhibitors, rice cultivar response, and gene expression on FPB selectivity in rice. Field experiments established in a randomized block design showed that rice plant injury due to two FPB rates (30 and 60 g ai ha−1) was affected by planting time and rice stage at herbicide application. The injury was higher at the earliest planting season and more in younger plants (V2) than larger (V6 and R0). However, no yield reduction was detected. Under greenhouse conditions, two dose-response experiments in a randomized block design showed that spraying malathion (1 kg ha−1) before FPB application did not reduce herbicide selectivity. The addition of two P450 inhibitors (dietholate and piperonyl butoxide, 10 g a.i. seed-kg−1 and 4.2 kg ai ha−1, respectively) decreased the doses to cause 50% of plant injury (ED50) and growth reduction (GR50). However, it seems not to compromise crop selectivity. BRS Pampeira cultivar showed lower ED50 and GR50 than IRGA 424 RI. A growth chamber experiment was conducted in a completely randomized design to evaluate the gene expression of rice plants sprayed with FPB (30 and 60 g ai ha−1). Results showed downregulation of OsWAKL21.2, an esterase probably related to bio-activation of FPB-ester. However, no effect was detected on CYP71A21 monooxygenase and OsGSTL transferase, enzymes probably related to FPB degradation. Further research should focus on understanding FBP bio-activation as the selective mechanism.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3