Abstract
Water management and irrigation conservation in calcareous sandy soil are of significant importance for sustaining agricultural production, especially in arid and semi-arid region that facing scarcity of water resources. The changes in hydro-physical characteristics of calcareous sand soil were investigated after date palm waste-derived biochar application in column trials. Significance of pyrolysis temperature (300 °C, 500 °C, and 700 °C), particle size [<0.5 mm (D0.5), 0.5–1 mm (D1), and 1–2 mm (D2)], and application rate (1%, 2.5%, and 5%) were studied. Variations in infiltration rate, intermittent evaporation, and saturated hydraulic conductivity as a function of aforementioned factors were investigated. After amending the top 10-cm soil layer with different biochar and application rates, the columns were subjected to six wetting and drying cycles by applying 25 cm3 tap water per week over a 6-week period. Overall, biochar application resulted in decreased saturated hydraulic conductivity, while improved cumulative evaporation. Specifically, biochar produced at 300 °C and 500 °C demonstrated 10.2% and 13.3% higher cumulative evaporation, respectively., whereas, biochar produced at 700 °C with 5% application rate resulted in decreased cumulative evaporation. Cumulative evaporation increased by 5.0%, 7.7% and, 7.8% for D0.5, D1 and D2 (mm) on average, respectively, as compared with the untreated soil. Thus, biochar with particle size 0.5–1 mm significantly improved hydro-physical properties when applied at 1%. Generally, using biochar produced at medium temperature and small particle size with appropriate application rates could improve the soil hydro-physical properties.
Funder
King Abdulaziz City for Science and Technology
Subject
Plant Science,Agronomy and Crop Science,Food Science