Determination of Cultivated Area, Field Boundary and Overlapping for A Plowing Operation Using ISO 11783 Communication and D-GNSS Position Data

Author:

Heiß Andreas,Paraforos Dimitrios,Griepentrog Hans

Abstract

Easily available and detailed area-related information is very valuable for the optimization of crop production processes in terms of, e.g., documentation and invoicing or detection of inefficiencies. The present study dealt with the development of algorithms to gain sophisticated information about different area-related parameters in a preferably automated way. Rear hitch position and wheel-based machine speed were recorded from ISO 11783 communication data during plowing with a mounted reversible moldboard plow. The data were georeferenced using the position information from a low-cost differential global navigation satellite system (D-GNSS) receiver. After the exclusion of non-work sequences from continuous data logs, single cultivated tracks were reconstructed, which represented as a whole the cultivated area of a field. Based on that, the boundary of the field and the included area were automatically detected with a slight overestimation of 1.4%. Different field parts were distinguished and single overlaps between the cultivated tracks were detected, which allowed a distinct assessment of the lateral and headland overlapping (2.05% and 3.96%, respectively). Incomplete information about the work state of the implement was identified as the main challenge to get precise results. With a few adaptions, the used methodology could be transferred to a wide range of mounted implements.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference25 articles.

1. Mobile farm equipment as a data source in an agricultural service architecture

2. Management information system for spatial analysis of tractor- implement draft forces;Tsiropoulos,2013

3. Aufbau und Einsatz eines Datenerfassungssystems für Ackerschlepper;Biller;Grundl. Landtechn.,1985

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3