Studying Crop Yield Response to Supplemental Irrigation and the Spatial Heterogeneity of Soil Physical Attributes in a Humid Region

Author:

Haghverdi Amir,Leib Brian,Washington-Allen Robert,Wright Wesley,Ghodsi Somayeh,Grant Timothy,Zheng Muzi,Vanchiasong Phue

Abstract

West Tennessee’s supplemental irrigation management at a field level is profoundly affected by the spatial heterogeneity of soil moisture and the temporal variability of weather. The introduction of precision farming techniques has enabled farmers to collect site-specific data that provide valuable quantitative information for effective irrigation management. Consequently, a two-year on-farm irrigation experiment in a 73 ha cotton field in west Tennessee was conducted and a variety of farming data were collected to understand the relationship between crop yields, the spatial heterogeneity of soil water content, and supplemental irrigation management. The soil water content showed higher correlations with soil textural information including sand (r = −0.9), silt (r = 0.85), and clay (r = 0.83) than with soil bulk density (r = −0.27). Spatial statistical analysis of the collected soil samples (i.e., 400 samples: 100 locations at four depths from 0–1 m) showed that soil texture and soil water content had clustered patterns within different depths, but BD mostly had random patterns. ECa maps tended to follow the same general spatial patterns as those for soil texture and water content. Overall, supplemental irrigation improved the cotton lint yield in comparison to rainfed throughout the two-year irrigation study, while the yield response to supplemental irrigation differed across the soil types. The yield increase due to irrigation was more pronounced for coarse-textured soils, while a yield reduction was observed when higher irrigation water was applied to fine-textured soils. In addition, in-season rainfall patterns had a profound impact on yield and crop response to supplemental irrigation regimes. The spatial analysis of the multiyear yield data revealed a substantial similarity between yield and plant-available water patterns. Consequently, variable rate irrigation guided with farming data seems to be the ideal management strategy to address field level spatial variability in plant-available water, as well as temporal variability in in-season rainfall patterns.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference36 articles.

1. Statistical Yearbook 2013: World Food and Agriculture,2013

2. Irrigation: Solving Potential Challenges: Policy Development 2013https://www.tnfarmbureau.org/wp-content/uploads/2010/10/Irrigation.pdf

3. Determining the Causes of Spatial and Temporal Variability of Wheat Yields at Sub-field Scale Using a New Method of Upscaling a Crop Model

4. Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3