Increased Activity of 5-Enolpyruvylshikimate-3-phosphate Synthase (EPSPS) Enzyme Describe the Natural Tolerance of Vulpia myuros to Glyphosate in Comparison with Apera spica-venti

Author:

Akhter Muhammad Javaid,Mathiassen Solvejg KoppORCID,Bekalu Zelalem Eshetu,Brinch-Pedersen HenrikORCID,Kudsk PerORCID

Abstract

Rattail fescue (Vulpia myuros (L.) C.C. Gmel.) is a self-pollinating winter annual grassy weed of winter annual crops. The problems with V. myuros are mostly associated with no-till cropping systems where glyphosate application before sowing or emergence of the crop is the most important control measure. Ineffective V. myuros control has been reported following glyphosate applications. Experiments were performed to study the effectiveness of glyphosate on V. myuros, and determine the causes of the lower performance of glyphosate on V. myuros compared to other grass weeds. Estimated GR50 values demonstrated that V. myuros was less susceptible to glyphosate than Apera spica-venti regardless of the growth stage. Within each species, glyphosate efficacy at different growth stages was closely related to spray retention. However, the low susceptibility to glyphosate in V. myuros was not caused by lower retention as previously suggested. A significantly lower shikimic acid accumulation in V. myuros compared to A. spica-venti was associated with a higher activity of the EPSPS enzyme in V. myuros. Nevertheless, the relative responses in EPSPS activity to different glyphosate concentrations were similar in the two grass species, which indicate that EPSPS from V. myuros is as susceptible to glyphosate as EPSPS from A. spica-venti suggesting no alternation in the binding site of EPSPS. The results from the current study indicate that V. myuros is less susceptible to glyphosate compared to A. spica-venti, and the low susceptibility of V. myuros is caused by an increased EPSPS enzyme activity.

Funder

Graduate School of Technical Sciences, Aarhus University, and the European Union’s Horizon 2020 research and innovation program, IWMPRAISE

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3