A Comparative Study of Various Methods for Handling Missing Data in UNSODA

Author:

Fu YingpengORCID,Liao Hongjian,Lv Longlong

Abstract

UNSODA, a free international soil database, is very popular and has been used in many fields. However, missing soil property data have limited the utility of this dataset, especially for data-driven models. Here, three machine learning-based methods, i.e., random forest (RF) regression, support vector (SVR) regression, and artificial neural network (ANN) regression, and two statistics-based methods, i.e., mean and multiple imputation (MI), were used to impute the missing soil property data, including pH, saturated hydraulic conductivity (SHC), organic matter content (OMC), porosity (PO), and particle density (PD). The missing upper depths (DU) and lower depths (DL) for the sampling locations were also imputed. Before imputing the missing values in UNSODA, a missing value simulation was performed and evaluated quantitatively. Next, nonparametric tests and multiple linear regression were performed to qualitatively evaluate the reliability of these five imputation methods. Results showed that RMSEs and MAEs of all features fluctuated within acceptable ranges. RF imputation and MI presented the lowest RMSEs and MAEs; both methods are good at explaining the variability of data. The standard error, coefficient of variance, and standard deviation decreased significantly after imputation, and there were no significant differences before and after imputation. Together, DU, pH, SHC, OMC, PO, and PD explained 91.0%, 63.9%, 88.5%, 59.4%, and 90.2% of the variation in BD using RF, SVR, ANN, mean, and MI, respectively; and this value was 99.8% when missing values were discarded. This study suggests that the RF and MI methods may be better for imputing the missing data in UNSODA.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Key Projects of Shaanxi International Science and Technology Cooperation Plan

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3