Silver Nanoparticles and Silver Ions Differentially Affect the Phytohormone Balance and Yield in Wheat

Author:

Pociecha EwaORCID,Gorczyca AnnaORCID,Dziurka MichałORCID,Matras Ewelina,Oćwieja Magdalena

Abstract

This study aimed to examine the hypothesis that silver nanoparticles (AgNPs) and silver ions might induce specific changes and thereby affect plant development and final yield. The experiment was performed on spring wheat, cultured hydroponically with two types of negatively charged AgNPs of an average size of 13–15 nm and silver ions for 14 days and then transplanted to pots with soil. Our results indicated that treatment with the AgNPs stabilized by specific compounds resulted in growth promotion and a reduced number of days to flowering, while that with the ionic form of Ag only caused greater growth in height without influencing the time to heading. Accelerated flowering was caused by changes in phytohormone balance, with GA6 found to be especially favorable. Nanoparticles and silver ions affected the function of photosystem II and the transport and partitioning of assimilates. Increases in the transport form of sugars such as sucrose, raffinose and sorbitol were associated with a considerable improvement in wheat yield, especially in the case of plants treated with the nanoparticle forms, which were more stable and resistant to oxidative dissolution.

Funder

Polish Ministry of Science and Higher Education (MNiSW) under Iuventus Plus

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3