Site-Specific Forage Management of Sericea Lespedeza: Geospatial Technology-Based Forage Quality and Yield Enhancement Model Development

Author:

Panda Sudhanshu S.ORCID,Terrill Thomas H.,Mahapatra Ajit K.,Kelly Brian,Morgan Eric R.ORCID,Wyk Jan A. van

Abstract

Site-specific forage management (SSFM), comprising growth observation, impact assessment, and timely strategic response to small variations in sericea lespedeza (SL; Lespedeza cuneata (Dum-Cours.) G. Don) production, has been envisioned as a life-changing approach for resource-poor (R-P) farmers in developing countries, assisting in the effective rearing of their small ruminants. The application of geospatial technologies, including geographic information systems (GIS), remote sensing, global navigation satellite system, and information technology, can support SSFM but has not been widely used for site-specific forage management. From our previous studies, it appears that the entire range of condensed tannins of lespedeza, namely extractable condensed tannin (ECT), fiber-bound condensed tannin (FBCT), and protein-bound condensed tannin (PBCT), as well as crude protein (CP), are excellent for promoting small ruminant digestion and overall health. The goal of this study was to develop an SSFM strategy for SL to enhance animal production in areas of drought-prone, low pH, marginally infertile soils. To achieve this goal, study objectives were to: (i) develop statistical and artificial neural networks-based (ANN) models to identify if a sound correlation exists among forage growth environmental features and SL-ECT content; (ii) determine suitability criteria, including climate, soil, and land use/land cover (LULC), for mass scale production of SL and collect supporting environmental geospatial data; and (iii) develop an automated geospatial model for SL growth suitability analysis in relation to optimal areas for its production in a case-study location. Telemetric data and individual climatologic parameters (including minimum, maximum, and average temperature, humidity, dewpoint, soil temperatures at three depths, soil moisture, evapotranspiration, total solar radiation, and precipitation) were found to correlate well (>75%) with the forage production parameters, including values of SL-ECT from the Fort Valley State University (FVSU) research station in Georgia in the southern United States. A backpropagation neural network (BPNN) model was developed using similar climatic input parameters, along with elevation (topography) and a normalized difference vegetation index (NDVI) to estimate the forage’s ECT with a testing root mean square error (RMSE) of 1.18%. With good correlation obtained between the climatic, soil, slope, and land cover input parameters, and SL-ECT as the output parameter, an SSFM model was developed with potential application to R-P farmers in areas suitable for SL establishment and growth. Eswatini (previously Swaziland), a landlocked country in southern Africa, in which numerous R-P small ruminant (sheep and goat) farmers reside, was used as the case study location to develop the SL production suitability model. Geospatial data were used for automated model development in an ArcGIS Pro ModelBuilder platform to provide information on where to grow SL efficiently to economically feed small ruminants. Land use/land cover, soil, topography, and climate based geospatial data of the region helped in the development of the automated SSFM geospatial model for spatial growth suitability location determination to assist farmers of Eswatini with their SL production decision making. This automated model can easily be replicated for farmers in other countries in Africa, as well as in other parts of the world having similar climatic conditions.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference39 articles.

1. Sericea lespedeza production in Georgia;Hoveland;Res. Bull. Ga. Agric. Exp. Stn.,1990

2. Sericea lespedeza production on acid soils in Swaziland;Mkhatshwa;Trop. Grassl.,1991

3. Stocker Cattle Performance and Calculated Pasture Costs, Alabama Cooperative Extension System;Ball,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3