Three-Dimensional Obstacle Avoidance Harvesting Path Planning Method for Apple-Harvesting Robot Based on Improved Ant Colony Algorithm

Author:

Yan Bin123ORCID,Quan Jianglin13,Yan Wenhui24

Affiliation:

1. College of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

2. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China

3. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China

4. College of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China

Abstract

The cultivation model for spindle-shaped apple trees is widely used in modern standard apple orchards worldwide and represents the direction of modern apple industry development. However, without an effective obstacle avoidance path, the robotic arm is prone to collision with obstacles such as fruit tree branches during the picking process, which may damage fruits and branches and even affect the healthy growth of fruit trees. To address the above issues, a three-dimensional path -planning algorithm for full-field fruit obstacle avoidance harvesting for spindle-shaped fruit trees, which are widely planted in modern apple orchards, is proposed in this study. Firstly, based on three typical tree structures of spindle-shaped apple trees (free spindle, high spindle, and slender spindle), a three-dimensional spatial model of fruit tree branches was established. Secondly, based on the grid environment representation method, an obstacle map of the apple tree model was established. Then, the initial pheromones were improved by non-uniform distribution on the basis of the original ant colony algorithm. Furthermore, the updating rules of pheromones were improved, and a biomimetic optimization mechanism was integrated with the beetle antenna algorithm to improve the speed and stability of path searching. Finally, the planned path was smoothed using a cubic B-spline curve to make the path smoother and avoid unnecessary pauses or turns during the harvesting process of the robotic arm. Based on the proposed improved ACO algorithm (ant colony optimization algorithm), obstacle avoidance 3D path planning simulation experiments were conducted for three types of spindle-shaped apple trees. The results showed that the success rates of obstacle avoidance path planning were higher than 96%, 86%, and 92% for free-spindle-shaped, high-spindle-shaped, and slender-spindle-shaped trees, respectively. Compared with traditional ant colony algorithms, the average planning time was decreased by 49.38%, 46.33%, and 51.03%, respectively. The proposed improved algorithm can effectively achieve three-dimensional path planning for obstacle avoidance picking, thereby providing technical support for the development of intelligent apple picking robots.

Funder

Key Research and Development Plan Project of Shaanxi Province

Doctoral Research Project of Xi’an University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3