Effect of Near-Freezing Temperature Storage on the Quality and Organic Acid Metabolism of Apple Fruit

Author:

Shu Chang1ORCID,Liu Bangdi23,Zhao Handong4,Cui Kuanbo5,Jiang Weibo1

Affiliation:

1. College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

2. Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China

3. Key Laboratory of Agro-Products Primary Processing, Ministry of Agriculture and Rural Affairs of China, Beijing 100125, China

4. School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China

5. Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China

Abstract

Organic acids play critical roles in fruit physiological metabolism and sensory quality. However, the conventional storage of apple fruit at 0 ± 0.1 °C cannot maintain fruit acidity efficiently. This study investigated near-freezing temperature (NFT) storage for ‘Golden Delicious’ apples, and the quality parameters, organic acid content, and malate metabolism were studied. The results indicate that NFT storage at −1.7 ± 0.1 °C effectively maintained the postharvest quality of apple fruit when compared to traditional storage at 0 ± 0.1 °C. Fruit that underwent NFT storage showed a better appearance and lower respiratory rate, ethylene production, weight loss, and malondialdehyde (MDA) content but higher firmness and soluble solids content. Further, fruit after NFT storage contained higher titratable acid (18.75%), malate (51.61%), citrate (36.59%), and succinate (2.12%) content when compared to the control after 250 days. This was achieved by maintaining higher cytosolic NAD-dependent malate dehydrogenase (cyNAD-MDH), phosphoenolpyruvate carboxylase (PEPC), vacuolar H+-ATPase (V-ATPase), and vacuolar inorganic pyrophosphatase (V-PPase) activities that promote malate biosynthesis and accumulation while inhibiting enzyme activity that is responsible for malate decomposition, including phosphoenolpyruvate carboxylase kinase (PEPCK) as well as the cytosolic NAD phosphate-dependent malic enzyme (cyNADP-ME). Further, storage at NFTs maintained a higher expression of malate biosynthesis-related genes (MdcyNAD-MDH and MdPEPC) and transport-related genes (MdVHA and MdVHP) while suppressing malate consumption-related genes (MdcyME and MdPEPCK). The results demonstrate that NFT storage could be an effective application for apple fruit, which maintains postharvest quality and alleviates organic acid degradation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3