Unravelling the Biochemical and Molecular Priming Effect of a New Yeast-Derived Product: New Perspectives towards Disease Management

Author:

Scimone Giulia1,Vicente Isabel1ORCID,Bartalena Guido2,Pisuttu Claudia1ORCID,Mariotti Lorenzo1ORCID,Risoli Samuele13ORCID,Pellegrini Elisa1ORCID,Sarrocco Sabrina1ORCID,Nali Cristina1ORCID

Affiliation:

1. Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

2. Kwizda Agro GmbH, Universitätsring 6, 1010 Vienna, Austria

3. University School for Advanced Studies IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy

Abstract

Plants constantly face the environment that surrounds them and fight for survival against biotic and abiotic stress factors. To deal with harmful conditions, plants have developed a multilayer defence system, making them capable of recognising threats and promptly recovering from them. This phenomenon, which takes advantage of the “memory effect”, is referred to as bio-priming and represents a new frontier in terms of crop protection. Here, we investigated the “indirect” protective mechanisms of a new yeast extract formulate in Vitis vinifera cv. Sangiovese plants at both the biochemical and genic levels. The formulate was applied once a week for three consecutive weeks, and grapevine leaves were sampled from the first to the fifth day after treatment (dat) at every week of the experiment. Increased levels of jasmonic acid (every week at 2 dat; +70% as average) and abscisic acid (at 1 dat of the first week, more than 1.7-fold higher than the control) and the underproduction of salicylic acid (from 2 dat; −18%) confirmed that these signalling molecules/”specialised compounds” are actively involved in the early activation of defence pathways in treated vines. In addition, pr2 and chit1b, two genes involved in regulating hormonal crosstalk, were significantly up-regulated (both in the first and second week of the trial) and were also found to underlie upstream molecular activation. The results obtained by this investigation confirm the use of this new product to prime and protect grapevines from a wide range of fungal and fungal-like plant pathogens through the induction of defence responses.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3