Design and Test of Discrete Element-Based Separation Roller Potato–Soil Separation Device

Author:

Du Xinwu123,Liu Jin1,Zhao Yueyun2,Zhang Chenglin1,Zhang Xiaoxuan1,Wang Yanshuai1

Affiliation:

1. College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China

2. Longmen Laboratory, Luoyang 471000, China

3. Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province, Luoyang 471003, China

Abstract

To address the problems of low bright rates and high rates of potato injuries, a left and right-hand rotation combination of potato–soil separation devices was developed. Its overall structure and working principle were introduced. A Texture Analyzer and pressure sensor were used to measure the force threshold of different varieties of potatoes. A discrete element model of separation rollers and potatoes was established. The collision characteristics of potatoes were analyzed using the device inclination angle, rotational speed, and the center distance of the separation rollers as test factors. A field trial was carried out to optimize the best combination of factors by taking the rate of injured potatoes, bright potatoes, and skin-breaking rate as the test indexes. The force threshold for skin-breaking injury in potatoes was found to be 190–195 N. When the inclination angle of the device was 6°, the rotation speed of the separation roller was 100 r/min, and the distance between the centers of the separation rollers was 79 mm. The rate of injury was 1.25%, the rate of bright potatoes was 99.01%, and the rate of skin-breaking was 1.58%. When the inclination angle of the device was 8°, the rotational speed of the separating roller was 80 r/min, and the center distance of the separating roller was 79 mm, the rate of injured potato was 1.43%, the rate of bright potato was 98.64%, and the rate of broken skin was 1.77%. This paper offers an optimized reference for the effectual removal of sticky soil.

Funder

Longmen laboratory project

National Nature Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3