Method of Peanut Pod Quality Detection Based on Improved ResNet

Author:

Yang Lili1,Wang Changlong1,Yu Jianfeng2,Xu Nan3,Wang Dongwei1

Affiliation:

1. College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, China

2. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China

3. College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian 271000, China

Abstract

Peanuts are prone to insect damage, breakage, germination, mildew, and other defects, which makes the quality of peanuts uneven. The difference in peanut pod quality makes the price and economic benefit also have a big difference. The classification of peanut pods according to quality is an important part of improving the product grade and market competitiveness. Real-time, accurate, and non-destructive quality detection of peanut pods can effectively improve the utilization and commercial value of peanuts. The strong subjectivity of manual detection and the low efficiency and low accuracy of mechanical detection have caused considerable wastage. Therefore, the present study proposed a new convolutional neural network for the peanut pod quality detection algorithm (PQDA) based on an improved ResNet. Compared to previous models, this model is more practical with high accuracy, lightweight, and easy nesting. Firstly, the detection and classification effects of ResNet18, AlexNet, and VGG16 are compared, and ResNet18 was determined to be the best backbone feature extraction network for model training. Secondly, three models were designed to optimize and improve the algorithm. The KRSNet module was added to the algorithm to make the model lightweight. The CSPNet module was added to the algorithm to improve the learning efficiency of each feature layer. The Convolutional Block Attention Module (CBAM) was added to the algorithm to improve its ability to capture more feature information about peanut pods. The experimental ablation results show that the precision of the improved model PQDA reaches 98.1%, and the size of parameters is only 32.63 M. Finally, the optimized model was applied to other peanut pod varieties for generalization experiments, and the accuracy reached 89.6% and 90.0%, indicating the effectiveness of the proposed peanut pod quality detection model. Furthermore, the model is suitable for deployment on embedded resource-limited devices, such as mobile terminals, to achieve the real-time and accurate detection of peanut pod quality.

Funder

National Key Research and Development Program

Key Research and Development Plan of Shandong Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3