Evaluation of Bacillus subtilis Czk1 Metabolites by LC–MS/MS and Their Antifungal Potential against Pyrrhoderma noxium Causing Brow Rot Disease

Author:

Liang Yanqiong1ORCID,Wu Weihuai1,Li Rui1,Lu Ying1,Wang Guihua2,Tan Shibei1,Chen Helong1,Xi Jingen1,Huang Xing1ORCID,He Chunping1,Yi Kexian3456

Affiliation:

1. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

2. College of Forestry, Hainan University, Haikou 570228, China

3. Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China

4. Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China

5. Hainan Key Laboratory for Detection and Control of Tropical Agricultural Pests, Haikou 571101, China

6. Hainan Engineering Research Center for Biological Control of Tropical Crops Diseases and Insect Pests, Haikou 571101, China

Abstract

Brown rot disease caused by Pyrrhoderma noxium is a widespread disease that severely affects the roots of rubber trees (Hevea brasiliensis Muell. Arg.). The economic losses, along with environmental and health problems arising from the use of disease control chemicals, have raised the interest of scholars to explore the use of biological control agents for the effective control of fungal pathogen P. noxium. Here, the inhibition effect of the culture filtrate of B. subtilis Czk1 on P. noxium was demonstrated. The findings indicate that the antifungal activity of this strain is mediated wholly or partly by compounds produced in the culture filtrate. The combined use of liquid chromatography–tandem mass spectrometry and antifungal activity assays rapidly identified compounds produced by B. subtilis Czk1. Metabolic profiles were assessed and used to identify major metabolites based on the scores of variable importance in the projection and the plot scores of principal component analysis. A total of 296 differential metabolites were screened, including 208 in positive ion mode and 88 in negative ion mode. Two key metabolites, diacetyl and trans-2-octenoic acid, were screened from 29 metabolites by antifungal activity assays. The median effective concentration (EC50) of trans-2-octenoic acid and diacetyl were 0.9075 mg/mL and 4.8213 mg/mL, respectively. The antifungal metabolites can disrupt the internal structure of the pathogenic fungal mycelium, thereby impeding its growth. This study is expected to contribute to the existing knowledge of Czk1-produced metabolites and their future antifungal applications. This study is also expected to provide a new biopreservative perspective on unexplored antifungal metabolites produced by Czk1 as a biocontrol agent.

Funder

Hainan provincial Natural Science Foundation of China

specific research fund of The Innovation Platform for Academicians of Hainan Province

Earmarked Fund for China Agriculture Research System

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3