Responses of Wheat Yield under Different Fertilization Treatments to Climate Change Based on a 35-Year In Situ Experiment

Author:

Zhang Rui,Yang Yingnan,Dang Tinghui,Zhu Yuanjun,Huang MingbinORCID

Abstract

Fertilization, as one of many important field management practices, can increase crop yields. However, whether different levels of fertilization will affect the response of wheat yields to inter-annual climate variations and long-term climate trends is not clear. In this study, 35-year wheat yields were used to investigate the responses of wheat yield to inter-annual climate variations and long-term climate trends under different fertilization treatments. The first difference method was used to de-trend wheat yields and climate variables and stepwise regression analysis was used to quantify the yield–climate relationship. The experimental design consisted of a control treatment (CK without fertilization) and three fertilizer treatments: nitrogen, phosphorus, and manure (NPM with 120 kg ha−1 N, 26.2 kg ha−1 P, and 75 t ha−1 manure), nitrogen and phosphorus (NP with 120 kg ha−1 N and 26.2 kg ha−1 P), and manure (M with 75 t ha−1 manure). Compared to the CK treatment, the NPM, NP, and M treatments increased wheat yield by an average of 201.9, 161.7, and 130.6% and increased yield inter-annual variability by an average of 191.2, 149.3, and 144.2%, respectively, during the study period (1985–2020). Inter-annual climate fluctuations in the study area explained 45, 38, 27, and 29% of wheat yield variations and 35-year climatic trends contributed to wheat yield decreases of 0.3, 0.7, 1.6, and 1.8% for the NPM, NP, M, and CK treatments, respectively. The results show the impact of inter-annual climate fluctuations on yield increases with the increasing level of fertilization, while the effect of long-term climate trends on yield decreases with the increasing level of fertilization.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3