Quantitative Estimation of the Effects of Soil Moisture on Temperature Using a Soil Water and Heat Coupling Model

Author:

Zhang Ziyuan,Chen Xiao,Pan ZhihuaORCID,Zhao Peiyi,Zhang Jun,Jiang Kang,Wang Jialin,Han Guolin,Song Yu,Huang Na,Ma Shangqian,Zhang Jiale,Yin Wenjuan,Zhang Zhenzhen,Men Jingyu

Abstract

Soil moisture is not only an essential component of the water cycle in terrestrial ecosystems but also a major influencing factor of regional climate. In the soil hydrothermal process, soil moisture has a significant regulating effect on surface temperature; it can drive surface temperature change by influencing the soil’s physical properties and the partitioning of the available surface energy. However, limited soil temperature and moisture observations restrict the previous studies of soil hydrothermal processes, and few models focus on estimating the impact of soil moisture on soil temperature. Therefore, based on the experiments conducted in Wuchuan County in 2020, this study proposes a soil water and heat coupling model that includes radiation, evaporation, soil water transport, soil heat conduction and ground temperature coupling modules to simulate the soil temperature and moisture and subsequently estimate the effects of soil moisture. The results show that the model performs well. The Nash–Sutcliffe coefficient (NSE) and the concordance index (C) of the simulated and measured values under each treatment are higher than 0.26 and 0.7, respectively. The RMSE of the simulation results is between 0.0067–0.017 kg kg−1 (soil moisture) and 0.43–1.06 °C (soil temperature), respectively. The simulated values matched well with the actual values. The soil moisture had a noticeable regulatory effect on the soil temperature change, the soil surface temperature would increase by 0.08–0.43 °C for every 1% decrease in soil moisture, and with the increase in soil moisture, the variation of the soil temperature decreased. Due to the changes in the solar radiation, the sensitivity of the soil temperature to the decline in soil moisture was the greatest during June–July and the least in September. Moreover, the contributions of soil moisture changes to temperature increase under various initial conditions are inconsistent, the increase in sunshine hours, initial daily average temperature and decrease in leaf area index (LAI), soil density and soil heat capacity can increase the soil surface temperature. The results are expected to provide insights for exploring the impact mechanism of regional climate change and optimizing the structure of agricultural production.

Funder

the Key R&D Program of Inner Mongolia, China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference55 articles.

1. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia

2. Regions of Strong Coupling Between Soil Moisture and Precipitation

3. The memory and climate effects of global soil moisture;Li;J. Glaciol. Geocryol.,2016

4. Reduced soil moisture contributes to more intense and more frequent heat waves in northern China

5. Spatiotemporal characteristics of soil temperature memory in China from observation;Kai;Theor. Appl. Climatol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3