Abstract
Modern precision agriculture applications increasingly rely on stable computer vision outputs. An important computer vision task is to discriminate between soil and plant pixels, which is called plant segmentation. For this task, supervised learning techniques, such as decision tree classifiers (DTC), support vector machines (SVM), or artificial neural networks (ANN) are increasing in popularity. The selection of training data is of utmost importance in these approaches as it influences the quality of the resulting models. We investigated the influence of three modeling parameters, namely proportion of plant pixels (plant cover), criteria on what pixel to choose (pixel selection), and number/type of features (input features) on the segmentation quality using DTCs. Our findings show that plant cover and, to a minor degree, input features have a significant impact on segmentation quality. We can state that the overperformance of multi-feature input decision tree classifiers over threshold-based color index methods can be explained to a high degree by the more balanced training data. Single-feature input decision tree classifiers can compete with state-of-the-art models when the same training data are provided. This study is the first step in a systematic analysis of influence parameters of such plant segmentation models.
Funder
Government of Lower Austria
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献