Establishment and Validation of a Structural Dynamics Model with Power Take-Off Driveline for Agricultural Tractors

Author:

Shao XuedongORCID,Zheng Bowen,Luo Zhenhao,Song Zhenghe

Abstract

As off-road vehicles, in addition to field transportation, another vital function of agricultural tractors is to provide power for field machinery. Therefore, the dynamic performance of the power take-off (PTO) driveline directly affects the field reliability of tractors. Firstly, a torsional vibration coupled spatial dynamics model of the power take-off driveline is proposed according to the classical machine driveline dynamics and gear dynamics theory. In the dynamics model, the interactions among the vertical, lateral, and rotational motions of the driveline parts are fully included. The coupling vibrations from internal excitations (such as tooth surface friction, gear time-varying mesh, and engine pulse) and external excitations (such as field machinery load) are also considered. Secondly, the simulation results of the model are obtained using the numerical solving algorithm ode15s. The actual experiment is carried out on the indoor Tractor PTO Test Bench. Then, the model is verified by comparing the test results with the simulation results. Finally, the dynamic characteristics of the whole driveline are revealed under different drive modes, especially strong interactions between the driveline and field machinery in low-speed and heavy-load mode. The gear mesh forces and the root mean square (RMS) values of the acceleration amplitude for the main parts generally decrease gradually with the increase in the PTO rotation speed and the decrease in PTO torque. Furthermore, the model can be applied to reliability assessment, for instance, vibration, damage, and fatigue of off-road vehicles considering gear transmissions, particularly in a field working environment.

Funder

National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3