Automatic Tandem Dual BlendMask Networks for Severity Assessment of Wheat Fusarium Head Blight

Author:

Gao Yichao,Wang Hetong,Li Man,Su Wen-HaoORCID

Abstract

Fusarium head blight (FHB) disease reduces wheat yield and quality. Breeding wheat varieties with resistance genes is an effective way to reduce the impact of this disease. This requires trained experts to assess the disease resistance of hundreds of wheat lines in the field. Manual evaluation methods are time-consuming and labor-intensive. The evaluation results are greatly affected by human factors. Traditional machine learning methods are only suitable for small-scale datasets. Intelligent and accurate assessment of FHB severity could significantly facilitate rapid screening of resistant lines. In this study, the automatic tandem dual BlendMask deep learning framework was used to simultaneously segment the wheat spikes and diseased areas to enable the rapid detection of the disease severity. The feature pyramid network (FPN), based on the ResNet-50 network, was used as the backbone of BlendMask for feature extraction. The model exhibited positive performance in the segmentation of wheat spikes with precision, recall, and MIoU (mean intersection over union) values of 85.36%, 75.58%, and 56.21%, respectively, and the segmentation of diseased areas with precision, recall, and MIoU values of 78.16%, 79.46%, and 55.34%, respectively. The final recognition accuracies of the model for wheat spikes and diseased areas were 85.56% and 99.32%, respectively. The disease severity was obtained from the ratio of the diseased area to the spike area. The average accuracy for FHB severity classification reached 91.80%, with the average F1-score of 92.22%. This study demonstrated the great advantage of a tandem dual BlendMask network in intelligent screening of resistant wheat lines.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3