Do Metals Increase or Decrease Nitrous Oxide Emissions and Maize Yields from Upland Soils?

Author:

Park Ye Lim,Lee Hyun Ho,Kim Sung Un,Kang NamgooORCID,Hong Chang Oh

Abstract

Metals, including copper (Cu), iron (Fe), and zinc (Zn), are associated with nitrous oxide (N2O) production processes, such as nitrification and denitrification. This study aimed to elucidate the effects of Cu, Fe, and Zn on N2O emissions and to determine cumulative N2O emission and crop yields from upland soils. Metals were applied at a rate of 20 kg ha−1 in upland soil supporting maize (Zea mays L.) growth in 2018 and 2019. While the mean value of cumulative N2O emissions across both years was 5.19 kg N2O ha−1 yr−1 for the control soil, those of soil treated with Cu, Fe, and Zn were 3.37, 2.48, and 4.82 kg N2O ha−1 yr−1, respectively. Ammonium (NH4+) concentration in soil was highest after Fe application, and nitrate (NO3−) concentration was lowest. The copy number of the amoA gene related to NH4+ oxidation was lowest after Fe enhancement, implying that nitrification was inhibited. Furthermore, N2O emission decreased with Cu addition because the copy number of the nosZ gene associated with N2O reduction to N2 was the highest. Because Cu and Fe decreased yield-scaled N2O emission, the application of either metal could reduce N2O emission per unit area of maize production, suggesting that both metals are beneficial soil amendments for reducing N2O emissions while maintaining maize yield.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3