A Modified Location-Weighted Landscape Index to Evaluate Nutrient Retention in Agricultural Wetlands: A Case Study of the Honghe Hani Rice Terraces World Heritage Site

Author:

Jiao Yuanmei,Zha Zhiqin,Xu QiueORCID

Abstract

Understanding the influence of landscape patterns on the water quality of agricultural wetlands is critically important for their management and related decision-making. However, the question of how to quantify this objectively remains a challenge in the relevant scientific fields. In this study, the location-weighted landscape index (LWLI), a process-oriented indicator that integrates ecological processes with landscape patterns based on the source and sink theory, was modified into the SLWLI by assigning nutrient-based weights in the Honghe Hani Rice Terraces World Heritage Site (HHRT). The results indicate that the five watersheds are dominated by sink landscapes, representing 64 percent of the total area. Rice terraced fields were a composite “source–sink” landscape, and their areas in the five watersheds ranged from 4.82 to 20.40%. The nutrient retention function of the sink landscapes of total nitrogen (TN) ranged from 0.64 to 0.86, whereas the total phosphorus (TP) ranged from 0.72 to 0.82, showing good retention function in regard to both nutrients. The contribution rates of forest land and rice terraces to TN and TP retention were greater than 47.07 and 17.07%, respectively, which indicates their key regulation of the nutrient retention function, reducing the risk of water eutrophication and leading to optimized conservation. The vertical pattern of the HHRT plays an important role in nutrient retention function. The SLWLI is an effective index that can be used to assess nutrient retention function and to identify sink landscapes for regulating water pollution in agricultural wetlands.

Funder

Yunnan Provincial Basic Research Project-Key Project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3