Comparative Transcriptome Analysis Reveals the Mechanisms Underlying Differential Seed Vigor in Two Contrasting Peanut Genotypes

Author:

Li Shengyu,Zeng Jiali,Zheng Zhao,Zhou Qi,Chen Shaona,Zheng Yixiong,Wan Xiaorong,Yang BinORCID

Abstract

Seed vigor is an important agronomic trait, and wide variation exists among peanut accessions. However, the detailed regulatory mechanisms underlying differences in seed vigor between varieties are not known in peanut yet. Here, we performed a comparative transcriptome analysis of germinating seeds in two contrasting peanut accessions, namely A86 (high-vigor variety) and A279 (low-vigor variety). A total of 583 and 860 differentially expressed genes (DEGs) were identified at two imbibition stages between A86 and A279, respectively. Pathway enrichment tests highlighted the cell wall remodeling-, hormone signaling-, transcriptional regulation-, and oxidative stress-related DEGs, which may explain to a certain extent the difference in seed vigor between the two cultivars. Among them, the largest number of cell wall remodeling-related DEGs were extensions followed by cellulose synthases, fasciclin-like arabinogalactan proteins, polygalacturonases, expansins, and pectinesterases and the hormone signaling-related DEGs belonged mainly to the auxin and ethylene signaling pathway. The majority of transcriptional regulation-related DEGs were MYB, FAR1, and bHLH transcription factors, and the oxidative stress-related DEGs were mainly peroxidases. Further physiological analyses indicated that differences in seed vigor between A86 and A279 may be associated with differences in the ROS-scavenging abilities mediated by peroxidases. Moreover, we identified 16 DEGs homologous to known Arabidopsis regulators of seed dormancy and germination, suggesting that these DEGs would play similar functional roles during peanut seed germination. Our results not only provide important insights into the difference in seed vigor between varieties, but offer candidate genes that are worth investigating in future studies.

Funder

National Natural Science Foundation of China

Department of Education of Guangdong Province

Department of Science and Technology of Guangdong Province

Agricultural and Rural Department of Guangdong Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3