Optimizing the Path of Plug Tray Seedling Transplanting by Using the Improved A* Algorithm

Author:

Li Xiaojun,Wang Weibing,Liu Ganghui,Li Runze,Li Fei

Abstract

In greenhouse nurseries, one of the important tasks of the automatic transplanter is replanting missing or bad seedling holes with healthy seedlings. This requires the transplanter to spend significant time moving between the supply trays and target trays during replanting. The diversity and complexity of the transplanting routes affect transplanter efficiency. Path planning method can find a better path for the manipulator and improve the efficiency of transplantation. The A* algorithm (A*), which is one of the optimal path search algorithms, is often used in practical applications of path planning. In this paper, the heuristic function of the A* is optimized by the ant colony algorithm (ACA), and an improved A* algorithm (Imp-A*) is obtained. Simulation tests and transplanting trials of Imp-A*, A*, ACA, Dijkstra (DA), and common sequence method (CSM) were carried out using 32-, 50-, 72-, and 128-hole plug trays. The results show that Imp-A* inherits the advantages of A* and ACA in terms of path planning length and computation time. Compared to A*, ACA, DA, and CSM, the transplanting time for Imp-A* was reduced by 2.4%, 12.84%, 11.63%, and 14.27%, respectively. In just six trays of transplanting tasks, Imp-A* saves 60.91 s compared to CSM, with an average time saving of 10.15 s per tray. The combination optimization algorithm has similar application prospects in agriculture.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference28 articles.

1. Dimensional synthesis and kinematics simulation of a high-speed plug seedling transplanting robot

2. Current situation and prospect of transplanter;Yu;Trans. Chin. Soc. Agric. Mach.,2014

3. Experiment on transplanting performance of automatic vegetable pot seedling transplanter for dry land;Wang;Trans. Chin. Soc. Agric. Eng.,2018

4. Early sowing increases grain yield of machine-transplanted late-season rice under single-seed sowing

5. Optimization of Seedling Transplanting Path Based on Genetic Algorithm;Tong;Trans. Chin. Soc. Agric. Mach.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3