Test and Simulation Analysis of the Working Process of Soybean Seeding Monomer

Author:

Yan Dongxu,Xu TianyueORCID,Yu Jianqun,Wang Yang,Guan Wei,Tian Ye,Zhang Na

Abstract

Soybean seeding monomers can realize the process of opening, seed throwing, covering, and compacting when they work. Due to the complexity of their working process, the relevant process cannot be analyzed by the discrete element method (DEM) alone. The DEM coupled with the multi-rigid body dynamics method (MBD) can solve the above problem, and the simulation analysis of the above process is realized by coupling the EDEM software with RecurDyn software. The changes in the position of soybean seed particles before and after covering and compacting are analyzed. The results show that when the working speed of the seeding monomer increases, the distance along the vertical direction of the soybean seed particles after covering gradually increases, and the distance along the horizontal direction gradually decreases. The effect of different working speeds of seeding monomer on the opening situation and the variation in seed particle positions is studied. The results show that the ditch angle gradually decreases as the working speed of the seeding monomer increases. The distribution of seed particle spacing is also analyzed. The above tests are simulated, and the results show a high agreement between the simulation and test results, proving the accuracy of the coupling method. This paper applies the coupling method for the first time to the simulation of the seeding monomer. This method can be applied not only to the analysis of the sowing process of soybean seeding monomers, but also be applied to the analysis of other machinery working processes, such as the tillage process, the sieving process, the planting and harvesting processes of crops, etc. It also deepens the application of the discrete element method in the field of agriculture.

Publisher

MDPI AG

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Model building and validation of DEM to predict bruise damage of apples

2. A novel approach to a realistic discrete element modelling (DEM) in 3D;Kafashan;Commun. Agric. Appl. Biol. Sci.,2007

3. An Approach to represent realistic particles of bulk assembly in three-dimensional-DEM simulations and applications;Kafash;Commun. Agric. Appl. Biol. Sci.,2011

4. Shape modelling of fruit by image processing;Kafashan;Commun. Agric. Appl. Biol. Sci.,2005

5. A discrete element model and its experimental validation for the prediction of draft forces in cohesive soil

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3