Arthropod Diversity Influenced by Two Musa-Based Agroecosystems in Ecuador

Author:

Vera-Aviles DanielORCID,Suarez-Capello Carmita,Llugany Mercè,Poschenrieder CharlotteORCID,De Santis Paola,Cabezas-Guerrero MiltonORCID

Abstract

Banana and plantain (Musa spp.) are very important crops in Ecuador. Agricultural production systems based on a single cultivar and high use of external inputs to increase yields may cause changes in the landscape structure and a loss in biodiversity. This loss may be responsible for a decrease in the complexity of arthropod food webs and, at the same time, related to a higher frequency and range of pest outbreaks. Very little is known either about the ecological mechanisms causing destabilization of these systems or the importance of the diversity of natural enemies to keep pests under control. Few studies have focused on this issue in tropical ecosystems. Here, we address this problem, comparing two Musa-based agroecosystems (monocultivar and mixed-species plantations) at two sites in Ecuador (La Maná and El Carmen) with different precipitation regimes. The diversity of soil macro fauna, represented by arthropods, was established, as indicators of the abovementioned disturbances. Our ultimate goal is the optimization of pest management by exploring more sustainable cropping systems with improved soil quality. Arthropod abundance was higher in the mixed system at both localities, which was clearly associated with the quality of the soils. In addition, we found Hymenoptera species with predatory or parasitic characteristics over the pests present in the agroecosystems under study. These highly beneficial species were more abundant at the locality of La Maná. The mixed type of production system provides plant diversity, which favors beneficial arthropod abundance and permits lower agrochemical application without yield penalties in comparison to the monoculture. These findings will help in the design of Musa-based agroecosystems to enhance pest control.

Funder

Bioversity International

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3