Modelling of Harvesting Machines’ Technical Parameters and Prices

Author:

Yezekyan TatevikORCID,Marinello FrancescoORCID,Armentano Giannantonio,Trestini SamueleORCID,Sartori LuigiORCID

Abstract

Technical and performance parameters of agricultural machines directly impact the operational efficiency and entire crop production. Sometimes, overestimation of technical and dimensional parameters of harvesting equipment is carried out with the intention of enhancing the operational efficiency, but this approach might turn out to negatively impact productivity due to unbalanced system design, and ultimately lead to financial losses. Therefore, a balanced preliminary estimation of technical parameters of equipment needs to be carried out before investment quantification, especially on the large capital-intensive machinery units, such as harvesting systems. In addition, availability of ready to use, simplified models for the price estimation from input technical parameters would reduce the complexity involved in this latter analysis. The current study is an attempt to provide tools to address these issues. A large dataset of combine and forage harvesters has been analyzed to investigate relevant parameter-to-parameter and parameter-to-price relations. The study of the available data allowed the determination of indicative models for the estimation of machine price, power, weight, tank capacity and working width. A significant correlation between power and price (R2 > 0.8) has been observed for two groups of harvesting machines. For combine harvesters, satisfactory correlations were found between power and weight, and power and tank capacity. A regression model for combine harvesters showed a satisfactory behavior at predicting the average working width that can be operated by a given power. On the other hand, for the forage harvesting group, the relation between these quantities has lower values; therefore, for better accuracy of the association, more sophisticated considerations should be incorporated, taking into account other parameters.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3