Effects of Thickness of Solid Media, Ventilation Rate, and Chamber Volume on Ammonia Emission from Liquid Fertilizers Using Dynamic Chamber-Capture System (DCS)

Author:

Kim Min-SukORCID,Kim Jeong-GyuORCID

Abstract

This study was conducted with the aim of improving the dynamic camber-capture system, which estimates ammonia emissions during the application of liquid fertilizer from livestock manure. We focused on the volume of the chamber and headspace, the height of the solid media, the flow rate of the pump, and the ventilation rate. Total ammoniacal nitrogen (NH3 + NH4+) is an important factor affecting ammonia volatilization. Even though the characteristics of liquid fertilizer were changed, the effect of total ammoniacal nitrogen on ammonia volatilization remained the largest. Increasing the thickness of solid media inside the chamber has the effect of reducing ammonia emission by reducing the contact area between liquid fertilizer and air. Although it is very difficult to measure and control the wind velocity in a chamber using a general vacuum pump, it can be indirectly evaluated through the ventilation rate in the macroscopic aspect. The higher the ventilation rate, the faster the flow of air in the chamber, which is linear with the increase in ammonia emission flux. We find that it may be necessary to improve the steady wind velocity within the chamber and of the linkages to upscale the wind tunnel system.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference49 articles.

1. Evaluating the Contribution of PM2.5 Precursor Gases and Re-ENTRAINED ROAD EMISSIONS to Mobile Source PM2.5 Particulate Matter Emissions;Hodan,2004

2. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies

3. Management Strategies to Reduce PM-2.5 Emission: Emphasis-Ammonia;Shin,2017

4. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3