Research on Hand–Eye Calibration Accuracy Improvement Method Based on Iterative Closest Point Algorithm

Author:

Yan Tingwu1ORCID,Li Peijuan2,Liu Yiting3,Jia Tong3,Yu Hanqi2,Chen Guangming4

Affiliation:

1. College of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, China

2. Industrial Center, College of Innovation and Entrepreneurship, Nanjing Institute of Technology, Nanjing 211167, China

3. College of Automation, Nanjing Institute of Technology, Nanjing 211167, China

4. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China

Abstract

In the functioning of the hand–eye collaboration of an apple picking robot, the accuracy of the hand–eye relationship is a key factor affecting the efficiency and accuracy of the robot’s operation. In order to enhance the low accuracy of traditional hand–eye calibration methods, linear and nonlinear solving methods based on mathematical tools such as quaternions are commonly adopted. To solve the loss of accuracy in decoupling during the linearization solution and to reduce the cumulative error that occurs during nonlinear solutions, a hand–eye calibration method, based on the ICP algorithm, is proposed in this paper. The method initializes the ICP matching algorithm with a solution derived from Tsai–Lenz, and substitutes it for iterative computation, thereby ascertaining a precise hand–eye conversion relationship by optimizing the error threshold and iteration count in the ICP matching process. Experimental results demonstrate that the ICP-based hand–eye calibration optimization algorithm not only circumvents the issues pertaining to accuracy loss and significant errors during solving, but also enhances the rotation accuracy by 13.6% and the translation accuracy by 2.47% compared with the work presented by Tsai–Lenz.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province Youth Fund

2021 Provincial Key R&D Plan

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3