Wheat Yield Estimation Based on Unmanned Aerial Vehicle Multispectral Images and Texture Feature Indices

Author:

Kang Yiliang12,Wang Yang3,Fan Yanmin12,Wu Hongqi12,Zhang Yue12,Yuan Binbin12,Li Huijun12,Wang Shuaishuai12,Li Zhilin12

Affiliation:

1. College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China

2. Xinjiang Laboratory of Soil and Plant Ecological Processes, Xinjiang Agricultural University, Urumqi 830052, China

3. College of Grass Industry, Xinjiang Agricultural University, Urumqi 830052, China

Abstract

To obtain timely, accurate, and reliable information on wheat yield dynamics. The UAV DJI Wizard 4-multispectral version was utilized to acquire multispectral images of winter wheat during the tasseling, grouting, and ripening periods, and to manually acquire ground yield data. Sixteen vegetation indices were screened by correlation analysis, and eight textural features were extracted from five single bands in three fertility periods. Subsequently, models for estimating winter wheat yield were developed utilizing multiple linear regression (MLR), partial least squares (PLS), BP neural network (BPNN), and random forest regression (RF), respectively. (1) The results indicated a consistent correlation between the two variable types and yield across various fertility periods. This correlation consistently followed a sequence: heading period > filling period > mature stage. (2) The model’s accuracy improves significantly when incorporating both texture features and vegetation indices for estimation, surpassing the accuracy achieved through the estimation of a single variable type. (3) Among the various models considered, the partial least squares (PLS) model integrating texture features and vegetation indices exhibited the highest accuracy in estimating winter wheat yield. It achieved a coefficient of determination (R2) of 0.852, a root mean square error (RMSE) of 74.469 kg·hm−2, and a normalized root mean square error (NRMSE) of 7.41%. This study validates the significance of utilizing image texture features along with vegetation indices to enhance the accuracy of models estimating winter wheat yield. It demonstrates that UAV multispectral images can effectively establish a yield estimation model. Combining vegetation indices and texture features results in a more accurate and predictive model compared to using a single index.

Funder

Study on Fertilizer Reduction and Efficiency in Kashgar Region

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3