Analysis of Multiangle Wheat Density Effects Based on Drill Single-Seed Seeding

Author:

Li Haikang1,Korohou Tchalla2,Liu Zhenyu34,Geng Jing34,Ding Qishuo2

Affiliation:

1. College of Intelligent Engineering, Jinzhong College of Information, Jinzhong 030801, China

2. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China

3. College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China

4. Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Jinzhong 030801, China

Abstract

Explaining the physiological and ecological effects of wheat population density can provide new research methods for field crop production. A three-year field trial under drill single-seed seeding was conducted, which used three different intra-row seed-seedling spacings to quantitatively analyze the density effect from three perspectives—population, individual plant, and single-stem panicle—at the winter wheat harvest. The results showed that year and density had significant effects on both the population and individual plant yield (p < 0.05), as well as on some yield components and biomass indicators. The interaction between planting density and annual climate was found only in the number of grains for both the entire population and individual plants. With the increase in planting density, the CI gradually increased, inhibiting the growth of individual plants and leading to a negative impact on monoculture wheat yield. The drill single-seed seeding method can provide a basic experiment condition for analyzing the density effect. The density effect of wheat populations originates from intraspecific competition, which mainly affects the growth of individual plants. Research based on the analysis of density effects from the perspectives of population, individual plants, and single-stem panicles can provide a methodological reference for precision agriculture.

Funder

the Key Research and Development Program of Shanxi Province

Research Project Supported by the Shanxi Scholarship Council of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3