Water Spinach (Ipomoea aquatica F.) Effectively Absorbs and Accumulates Microplastics at the Micron Level—A Study of the Co-Exposure to Microplastics with Varying Particle Sizes

Author:

Zhao Yachuan12,Hu Can12ORCID,Wang Xufeng12,Cheng Hui12,Xing Jianfei12,Li Yueshan3,Wang Long12,Ge Tida4ORCID,Du Ao12,Wang Zaibin12

Affiliation:

1. College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China

2. Key Laboratory of Modern Agricultural Engineering of Colleges and Universities, Department of Education of Xinjiang Uygur Autonomous Region, Alar 843300, China

3. Department of Educational Administration, University of Saskatchewan, Saskatoon, SK S7N0X1, Canada

4. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China

Abstract

The absorption of microplastics (MPs; size < 5 mm) by plants has garnered increasing global attention owing to its potential implications for food safety. However, the extent to which leafy vegetables can absorb large amounts of MPs, particularly those > 1 μm, remains insufficiently demonstrated. To address this gap in knowledge, we conducted water culture experiments using water spinach (Ipomoea aquatica F.) as a model plant. The roots of water spinach were exposed to a mixed solution that contained fluorescently labeled polystyrene (PS) beads with particle sizes of 200 nm and 1 μm for 10 d. We utilized laser confocal scanning microscopy and scanning electron microscopy to record the absorption, migration, and patterns of accumulation of these large particle sizes of MPs within water spinach. Our findings revealed that micron-sized PS beads were absorbed by the roots in the presence of submicron PS beads and subsequently transported through the exosomes to accumulate to significant levels in the leaves. Short-term hydroponic experiments further indicated that high concentrations of PS bead solutions significantly inhibited the growth of water spinach owing to their large specific surface area that hindered the uptake of water and nutrients by the roots. In conclusion, both sizes of PS beads were found to be absorbed by water spinach, thereby increasing the risk associated with direct human consumption of microplastics in fruits and vegetables. This study provides valuable scientific insights to assess the pollution risks related to fruits and vegetables, as well as ensuring vegetable safety.

Funder

National Natural Science Foundation of China

Bingtuan Science and Technology Program

Joint scientific research fund project of Nanjing Agricultural University and Tarim University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3