Identification of Stem Rust Resistance Genes in Triticum Wheat Cultivars and Evaluation of Their Resistance to Puccinia graminis f. sp. tritici

Author:

Gao Fu1,Wu Xianxin12,Sun Huiyan1,Wang Ziye1,Chen Si3,Zou Longmei1,Yang Jinjing1,Wei Yifan1,Ni Xinyu1,Sun Qian1,Li Tianya1ORCID

Affiliation:

1. College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China

2. Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China

3. Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

Abstract

Wheat stem rust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), poses a substantial threat to global wheat production. Utilizing stem rust resistance (Sr) genes represents an economically viable, effective, and environmentally friendly approach to disease control. In this study, gene postulation, molecular testing, and pedigree analysis were used to identify the presence of Sr genes in 45 wheat cultivars. In addition, the resistance of these cultivars was evaluated against two predominant Pgt races, 34MRGQM and 21C3CTHTM, at the adult-plant stage during 2021–2022. The results identify seven Sr genes (Sr31, Sr38, Sr30, SrTmp, Sr22, Sr19, and Sr5) within 35 wheat cultivars. Among these, 23 cultivars contained Sr31, whereas Sr5 and SrTmp were present in four cultivars each. Han 5316, Shimai 15, Shiyou 20, and Kenong 1006 exhibited the presence of Sr19, Sr22, Sr30, and Sr38, respectively. Molecular studies confirmed the absence of Sr25 and Sr26 in any of the wheat cultivars. During field evaluation, 37 (82.2%) and 39 (86.7%) wheat cultivars demonstrated resistance to races 34MRGQM and 21C3CTHTM, respectively. Moreover, 33 wheat cultivars (73.3%) exhibited resistance to all the tested races. These study findings will significantly contribute to future research in wheat pre-breeding and abiotic stress tolerance.

Funder

Natural Science Foundation of Education Department of Liaoning Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3