Chitosan Regulates the Root Architecture System, Photosynthetic Characteristics and Antioxidant System Contributing to Salt Tolerance in Maize Seedling

Author:

Jiao Qiujuan1,Shen Fengmin1,Fan Lina1,Song Zihao1,Zhang Jingjing1,Song Jia1,Fahad Shah2,Liu Fang1,Zhao Ying1,Tian Zhiqiang3,Liu Haitao1

Affiliation:

1. College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China

2. Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan

3. College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China

Abstract

Salinity is an obstacle to global agriculture, as it affects plant growth and development. Chitosan (CTS) has been suggested as a plant growth regulator to alleviate environmental stresses. In this study, the morphological and biochemical responses of chitosan application (75 mg L−1) on maize seedling growth under salt stress (150 mM) were conducted with a hydroponic experiment. The results exhibited that CTS application effectively recovered salt-inhibited biomass accumulation and root architecture by increasing chlorophyll content and photosynthetic assimilation and reducing sodium content in shoots and roots by 25.42% and 5.12% compared with NaCl treatment. Moreover, salt-induced oxidative stress was alleviated by CTS application by increasing the activities of antioxidant enzymes of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase and content of ascorbate. Correlation analysis and partial least squares (PLS) analysis revealed that root morphology and ascorbate play key roles for maize seedlings in response to salt stress. Based on these results, CTS application is recommended as an effective approach to enhance the tolerance of maize seedlings under salt stress.

Funder

Key Research Projects of Higher Education Institutions in Henan Province

College Students’ Innovative Entrepreneurial Training Plan Program

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3