Nitrogen Fertilization Boosts Maize Grain Yield, Forage Quality, and Estimated Meat Production in Maize–Forage Intercropping

Author:

Gilli Bruno R.1,Grassmann Camila S.1,Mariano Eduardo2ORCID,Rosolem Ciro A.1ORCID

Affiliation:

1. School of Agricultural Sciences, São Paulo State University, Av. Universitária, 3780, Botucatu 18610-034, SP, Brazil

2. Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, SP, Brazil

Abstract

Crop–livestock integrated systems such as intercropping and crop rotation have been critical for sustainable agriculture, promoting land use intensification throughout the year. The success of these systems under no-till depends on numerous factors, and the choice of forage grass is paramount. In this study, maize grain yield, forage dry matter yield, bromatological quality, and estimated meat production were assessed in a field experiment where maize (Zea mays L.) was intercropped with Guinea grass (Megathyrsus maximus cv. Tanzania) and palisade grass (Urochloa brizantha cv Marandu) under N rates from 0 to 270 kg ha−1. Nitrogen fertilization resulted in the highest forage dry matter yield, on average, 2.9-fold higher than the N-unfertilized treatments. The highest maize grain yield was obtained with 270 kg ha−1 of N, 48% higher than all other treatments. Guinea grass intercropped with maize and fertilized with 270 kg ha−1 of N resulted in an estimated meat production 27% higher than palisade grass at the same N rate. However, at the final cut, Guinea grass fertilized with 270 kg ha−1 of N led to the highest neutral detergent fiber, acid detergent fiber, and cellulose. While palisade grass seems to impose lower competition with maize, Guinea grass increases estimated meat production.

Funder

FAPESP-São Paulo Research Foundation

FAPEG-Goiás Research Foundation

FAPEMA-Maranhão Research Foundation

Biotechnology and Biological Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3