Impact of Cypermethrin (Arpon G) on Soil Health and Zea mays Growth: A Microbiological and Enzymatic Study

Author:

Borowik Agata1ORCID,Wyszkowska Jadwiga1ORCID,Zaborowska Magdalena1ORCID,Kucharski Jan1ORCID

Affiliation:

1. Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland

Abstract

In defining the research objective, consideration was given to the expanding range of applications of third-generation pyrethroids, including cypermethrin—the active substance in Arpon G preparation. The interest in cypermethrin is due to its high thermostability and photostability. This study verified the effect of Arpon G on both the soil condition and the growth and development of Zea mays. To this end, the alpha and beta diversity of bacterial and fungal communities were characterized using the NGS (Next Generation Sequencing) method, as was the response of soil enzymes. The positive response of Z. mays to the soil application of cypermethrin corresponded to higher soil microbial and biochemical activity. Sowing the soil with Z. mays moderated changes in the biodiversity of alpha- and beta-bacterial communities to a greater extent than cypermethrin. The influence of both parameters was less significant for fungi. Although bacteria belonging to the Actinobacteria phylum and fungi from the Ascomycota phylum dominated in the soil, the use of Arpon G reduced the abundance of unique nucleotide sequences in the mycobiome to a greater extent than in the bacteriobiome. The inhibitory potential of Arpon G was only evident for acid phosphatase (by 81.49%) and arylsulfatase (by 16.66%) in the soil sown with Z. mays. The activity of catalase, dehydrogenases, β-glucosidase, arylsulfatase, and alkaline phosphatase was most strongly associated with the abundance of bacteria, while dehydrogenases were correlated with the abundance of fungi at the genus level. Arpon G can, thus, be considered a safe insecticide for soil conditions and, consequently, for its productive function.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3