Detection of the Corn Kernel Breakage Rate Based on an Improved Mask Region-Based Convolutional Neural Network

Author:

Zhang Hongmei1,Li Zhijie1,Yang Zishang1,Zhu Chenhui1,Ding Yinhai1,Li Pengchang1,He Xun1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China

Abstract

Real-time knowledge of kernel breakage during corn harvesting plays a significant role in the adjustment of operational parameters of corn kernel harvesters. (1) Transfer learning by initializing the DenseNet121 network with pre-trained weights for training and validating a dataset of corn kernels was adopted. Additionally, the feature extraction capability of DenseNet121 was improved by incorporating the attention mechanism of a Convolutional Block Attention Module (CBAM) and a Feature Pyramid Network (FPN) structure. (2) The quality of intact and broken corn kernels and their pixels were found to be coupled, and a linear regression model was established using the least squares method. The results of the test showed that: (1) The MAPb50 and MAPm50 of the improved Mask Region-based Convolutional Neural Network (RCNN) model were 97.62% and 98.70%, in comparison to the original Mask Region-based Convolutional Neural Network (RCNN) model, which were improved by 0.34% and 0.37%, respectively; the backbone FLOPs and Params were 3.09 GMac and 9.31 M, and the feature extraction time was 206 ms; compared to the original backbone, these were reduced by 3.87 GMac and 17.32 M, respectively. The training of the obtained prediction weights for the detection of a picture of the corn kernel took 76 ms, so compared to the Mask RCNN model, it was reduced by 375 ms; based on the concept of transfer learning, the improved Mask RCNN model converged twice as quickly with the loss function using pre-training weights than the loss function without pre-training weights during training. (2) The coefficients of determination R2 of the two models, when the regression models of the pixels and the quality of intact and broken corn kernels were analyzed, were 0.958 and 0.992, respectively. These findings indicate a strong correlation between the pixel characteristics and the quality of corn kernels. The improved Mask RCNN model was used to segment mask pixels to calculate the corn kernel breakage rate. The verified error between the machine vision and the real breakage rate ranged from −0.72% to 0.65%, and the detection time of the corn kernel breakage rate was only 76 ms, which could meet the requirements for real-time detection. According to the test results, the improved Mask RCNN method had the advantages of a fast detection speed and high accuracy, and can be used as a data basis for adjusting the operation parameters of corn kernel harvesters.

Funder

Henan Province Modern Agricultural Industrial Technology System Maize Whole-process Mechanization Special Project

National Key Research and Development Program

Henan Province Science and Technology Research

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3