Changes in Polar Metabolites during Seed Germination and Early Seedling Development of Pea, Cucumber, and Wheat

Author:

Szablińska-Piernik Joanna1ORCID,Lahuta Lesław Bernard1ORCID

Affiliation:

1. Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10-719 Olsztyn, Poland

Abstract

Seed-to-seedling transition plays a crucial role in plant vegetation. However, changes in the metabolome of crop seedlings during seed germination and early seedling development are mostly unknown and require a deeper explanation. The present study attempted to compare qualitative and quantitative changes in polar metabolites during the seed germination and early development of seedlings of three different and important crop types: pea, cucumber, and wheat. The application of gas chromatography coupled with a flame ionization detector, as well as gas chromatography coupled with mass spectrometry, identified 51 polar metabolites. During seed imbibition/germination, the rapid degradation of raffinose family oligosaccharides (RFOs) preceded a dramatic increase in the concentrations of intermediates of glycolysis and the TCA cycle in embryonic axes (of pea and cucumber) or embryos (of wheat), confirming the important role of RFOs in the resumption of respiration and seed-to-seedling transition. After germination, the metabolic profiles of the growing roots, epicotyl/hypocotyl/coleoptile, and cotyledons/endosperm changed according to fluctuations in the concentrations of soluble carbohydrates, amino acids, and organic acids along the timeline of seedling growth. Moreover, the early increase in species-specific metabolites justified their role in seedling development owing to their participation in nitrogen metabolism (homoserine in pea), carbon translocation (galactinol, raffinose, and stachyose), and transitory carbon accumulation (1-kestose in wheat). The obtained metabolic profiles may constitute an important basis for further research on seedling reactions to stress conditions, including identification of metabolic markers of stress resistance.

Funder

University of Warmia and Mazury in Olsztyn, Poland

National Center of Science, Poland

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3