Maize Leaf Compound Disease Recognition Based on Attention Mechanism

Author:

Dong Ping1ORCID,Li Kuo1,Wang Ming1,Li Feitao1,Guo Wei1ORCID,Si Haiping1

Affiliation:

1. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China

Abstract

In addition to the conventional situation of detecting a single disease on a single leaf in corn leaves, there is a complex phenomenon of multiple diseases overlapping on a single leaf (compound diseases). Current research on corn leaf disease detection predominantly focuses on single leaves with single diseases, with limited attention given to the detection of compound diseases on a single leaf. However, the occurrence of compound diseases complicates the accuracy of traditional deep learning algorithms for disease detection, necessitating the exploration of new models for the identification of compound diseases on corn leaves. To achieve rapid and accurate identification of compound diseases in corn fields, this study adopts the YOLOv5s model as the base network, chosen for its smaller size and faster detection speed. We propose a corn leaf compound disease recognition method, YOLOv5s-C3CBAM, based on an attention mechanism. To address the challenge of limited data for corn leaf compound diseases, a CycleGAN model is employed to generate synthetic images. The scarcity of real data is thereby mitigated, facilitating the training of deep learning models with sufficient data. The YOLOv5s model is selected as the base network, and an attention mechanism is introduced to enhance the network’s focus on disease lesions while mitigating interference from compound diseases. This augmentation results in improved recognition accuracy. The YOLOv5s-C3CBAM compound disease recognition model, incorporating the attention mechanism, achieves an average precision of 83%, an F1 score of 81.98%, and a model size of 12.6 Mb. Compared to the baseline model, the average precision is improved by 3.1 percentage points. Furthermore, it outperforms Faster R-CNN and YOLOv7-tiny models by 27.57 and 2.7 percentage points, respectively. This recognition method demonstrates the ability to rapidly and accurately identify compound diseases on corn leaves, offering valuable insights for future research on precise identification of compound agricultural crop diseases in field conditions.

Funder

Natural Science Foundation of Henan Province, China

Key Research and Development Project of Henan Province, China

National Natural Science Foundation of China

Joint Fund of Science and Technology Research Development program (Cultivation project of preponderant discipline) of Henan Province, China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Maize Leaf Disease Recognition Using Deep Learning;Sakarya University Journal of Computer and Information Sciences;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3