Response of Winter Wheat to Delayed Sowing and Varied Nitrogen Fertilization

Author:

Jarecki Wacław1ORCID

Affiliation:

1. Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland

Abstract

Common wheat is one of the most important cereal crops in the world. In cultivation, winter, spring, and facultative varieties of this species are known. In wheat agronomy, timely sowing and optimal nitrogen fertilization are particularly crucial practices, as both significantly impact yield and grain quality. In a three-year field experiment, the response of the winter wheat variety RGT Kilimanjaro to two sowing dates (recommended and delayed by 30 days) and varied nitrogen fertilization levels (100 kg ha−1, 150 kg ha−1, and 200 kg ha−1) was investigated. It was shown that the difference in grain yield between 2021 and 2023 amounted to 0.74 kg ha−1. The application of 200 N kg ha−1 significantly increased the Soil Plant Analysis Development (SPAD) index and Leaf Area Index (LAI) compared to the variant with a delayed sowing date and a nitrogen dose of 100 kg ha−1. Yield components (number of spikes per square meter, thousand grain weight) and grain yield were highest when wheat was sown at the recommended date and with the application of either 150 or 200 N kg ha−1. The number of grains per spike significantly varied between the variant with the recommended sowing date and a dose of 200 N kg ha−1 and the variant with a delayed sowing date and a dose of 100 N kg ha−1. The lowest grain yield was obtained at a 30-day late wheat sowing date when applying 100 N kg ha−1. The protein content in the grain was primarily influenced by nitrogen fertilization. Therefore, it can be concluded that delaying the sowing date of winter wheat by 30 days results in a decrease in grain yield but can be compensated by increased nitrogen fertilization. The most favorable economic effects were achieved with the application of 150 N kg ha−1 at the recommended sowing date. Considering that high doses of nitrogen fertilization can have adverse effects on the natural environment, research in this area should be continued.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3