An Accurate Approach for Predicting Soil Quality Based on Machine Learning in Drylands

Author:

El Behairy Radwa A.1ORCID,El Arwash Hasnaa M.2ORCID,El Baroudy Ahmed A.1ORCID,Ibrahim Mahmoud M.1ORCID,Mohamed Elsayed Said34ORCID,Rebouh Nazih Y.4ORCID,Shokr Mohamed S.1ORCID

Affiliation:

1. Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt

2. Mechatronics Engineering Department, Alexandria Higher Institute of Engineering & Technology (AIET), Alexandria 21311, Egypt

3. National Authority for Remote Sensing and Space Sciences, Cairo 1564, Egypt

4. Department of Environmental Management, Institute of Environmental Engineering (RUDN University), Moscow 117198, Russia

Abstract

Nowadays, machine learning (ML) is a useful technology due to its high accuracy in constructing non-linear models and algorithms that can adapt to the complexity and diversity of data. Thus, the current work aimed to predict the soil quality index (SQI) from extensive soil data, achieving high accuracy with the artificial neural networks (ANN) model. However, the efficiency of ANN depends on the accuracy of the data that is prepared for training. For this purpose, MATLAB programming language was used to enable the calculation, classification, and compilation of the results into databases within a few minutes. The proposed MATLAB program was highly efficient, accurate, and quick in calculating soil big data for training the machine compared with traditional methods. The database contains 306 vector sets, 80% of them are used for training and the remaining 20% are reserved for testing. The optimal model obtained comprises one hidden layer with 250 neurons and one output layer with a sigmoid function. The ANN achieved a high coefficient of determination (R2) values for SQI estimation, with around 0.97 and 0.98 for training and testing, respectively. The results indicate that 36.93% of the total soil samples belonged to the very high quality class (C1). In contrast, the high quality (C2), moderate quality (C3), low quality (C4), and very low quality (C5) classes accounted for 10.46%, 31.37%, 20.92%, and 0.33% of the samples, respectively. The high contents of CaCO3, pH, sodium saturation, salinity, and clay content were identified as limiting factors in certain areas. The results of this study indicated high accuracy of soil quality assessment using physical, chemical, and fertility soil features in regression analysis with ANN. This method, which is suitable for arid zones, enhances agricultural productivity and decision-making by identifying critical soil quality categories and constraints.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3