The Identification of Drought Tolerance Candidate Genes in Oryza sativa L. ssp. Japonica Seedlings through Genome-Wide Association Study and Linkage Mapping

Author:

Liu Tao1,Li Shuangshuang1,Du Haoqiang1,Cui Jingnan1,Xu Shanbin1,Wang Jingguo2,Liu Hualong2,Zou Detang2ORCID,Lu Wenhe1ORCID,Zheng Hongliang12

Affiliation:

1. College of Agriculture, Northeast Agricultural University, Harbin 150030, China

2. Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China

Abstract

Drought stress poses a significant threat to rice production, necessitating the identification of genes associated with drought tolerance. This study employed a combination of genome-wide association study (GWAS) and linkage mapping to pinpoint seedling drought tolerance genes in Japonica rice. Using the leaf rolling scale (LRS) as the phenotypic index, we assessed rice drought tolerance under polyethylene glycol-induced drought during the seedling stage. A lead SNP C8_28933410 by GWAS was identified, which was located within qLRS-8-1 identified by linkage mapping on chromosome 8. Combing the LD block analyses and QTL interval, a 138.6 kb overlap interval was considered as the candidate region. Haplotype analysis, qRT-PCR, sequence analysis, and mutant phenotype verification led to the speculation that LOC_Os08g05520 is a candidate gene associated with drought tolerance. Our findings provide a valuable reference for breeders aiming to enhance rice drought tolerance.

Funder

Northeast agricultural university

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3