Research on Load Spectrum Reconstruction Method of Exhaust System Mounting Bracket of a Hybrid Tractor Based on MOPSO-Wavelet Decomposition Technique

Author:

Sun Liming123,Liu Mengnan23,Wang Zhipeng123,Wang Chuqiao1,Luo Fuqiang1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

2. State Key Laboratory of Intelligent Agricultural Power Equipment, Luoyang 471039, China

3. First Tractor Co., Ltd., Luoyang 471039, China

Abstract

To overcome the limitations of the hybrid tractor bumping tests, which include extended cycle times, high costs, and impracticality for single-part reliability verification, this study focuses on the exhaust system mounting bracket of a hybrid tractor. A novel approach that combines multi-objective particle swarm optimization (MOPSO) and wavelet decomposition algorithms was employed to enhance the reconstruction of shock vibration signals. This approach aims to enable the efficient acquisition of input signals for subsequent shaker table testing. The methodology involves a systematic evaluation of the spectral correlation between the original signal and the reconstructed signal at the stent’s response position, along with signal compression time. These parameters collectively constitute the objective function. The multi-objective particle swarm optimization algorithm is then deployed to explore a range of crucial parameters, including wavelet basic functions, the number of wavelet decomposition layers, and the selection of wavelet components. This exhaustive exploration identifies an optimized signal reconstruction method that accurately represents shock vibration loads. Upon rigorous screening based on our defined objectives, the optimal solution vector was determined, which includes the utilization of the dB10 wavelet basic function, employing a 12-layer wavelet decomposition, and selecting wavelet components a12 and d3~d11. This specific configuration enables the retention of 95% of the damage coefficients while significantly compressing the test time to just 46% of the original signal duration. The implications of our findings are substantial as the reconstructed signal obtained through our optimized approach can be readily applied to shaker excitation. This innovation results in a notable reduction in test cycle time and associated costs, making it particularly valuable for engineering applications, especially in tractor design and testing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3