Research on an Intelligent Agricultural Machinery Unmanned Driving System

Author:

Ren Haoling12,Wu Jiangdong12ORCID,Lin Tianliang12,Yao Yu3,Liu Chang12

Affiliation:

1. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China

2. Fujian Key Laboratory of Green Intelligent Drive and Transmission for Mobile Machinery, Xiamen 361021, China

3. Mechatronic Engineering with the School of Beihang University, Beijing 102206, China

Abstract

Intelligent agricultural machinery refers to machinery that can independently complete tasks in the field, which has great significance for the transformation of agricultural modernization. However, most of the existing research on intelligent agricultural machinery is limited to unilateral research on positioning, planning, and control, and has not organically combined the three to form a fully functional intelligent agricultural machinery system. Based on this, this article has developed an intelligent agricultural machinery system that integrates positioning, planning, and control. In response to the problem of large positioning errors in the large range of plane anchoring longitude and latitude, this article integrates geographic factors such as ellipsoid ratio, long and short axis radius, and altitude into coordinate transformation, and combines RTK/INS integrated inertial navigation to achieve precise positioning of the entire vehicle over a large range. In response to the problem that existing full-coverage path planning algorithms only focus on job coverage as the optimization objective and cannot achieve path optimization, this paper proposes a multi-objective function-coupled full-coverage path planning algorithm that integrates three optimization objectives: job coverage, job path length, and job path quantity. This algorithm achieves optimal path planning while ensuring job coverage. As the existing pure pursuit algorithm is not suitable for the motion control of tracked mobile machinery, this paper reconstructs the existing pure pursuit algorithm based on the Kinematics characteristics of tracked mobile machinery, and adds a linear interpolation module, so that the actual tracking path points of motion control are always ideal tracking path points, effectively improving the motion control accuracy and control stability. Finally, the feasibility of the intelligent agricultural machinery system was demonstrated through corresponding simulation and actual vehicle experiments. This intelligent agricultural machinery system can cooperate with various operating tools and independently complete the vast majority of agricultural production activities.

Funder

National Natural Science Foundation of China

Key projects of natural science foundation of Fujian Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3