Development of Selenium Nanoparticle Based Agriculture Sensor for Heavy Metal Toxicity Detection

Author:

Ahmed Faheem,Dwivedi SourabhORCID,Shaalan Nagih M.ORCID,Kumar ShalendraORCID,Arshi Nishat,Alshoaibi AdilORCID,Husain Fohad Mabood

Abstract

The presence of heavy metals in increased concentrations in the environment has become a global environmental concern. This rapid increase in heavy metals in the environment is attributed to enhanced industrial and mining activities. Metal ions possess a lengthy half-life and property to bioaccumulate, are non-biodegradable and, thus, are a threat to the human health. A number of conventional spectroscopic and chromatographic techniques are being used for the detection of heavy metals, but these suffer from various limitations. Nano-based sensors have emerged as potential candidates for the sensitive and selective detection of heavy metals. Thus, the present study was focused on the synthesis of selenium nanoparticles (SeNPs) by using selenite-reducing bacteria in the development of a heavy metal toxicity biosensor. During the biosynthesis of selenium nanoparticles, supernatants of the overnight-grown culture were treated with Na2SeO32− and incubated for 24 h at 37 °C. The as-synthesized nanoparticles were characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) and transmission electron microscopy (TEM) analyses. XRD and TEM results confirmed the formation of SeNPs in sizes ranging from 35 to 40 nm, with face-centered cubic (FCC) structures. The bioreduction process and validation of the formation of SeNPs was further confirmed by FTIR studies. The reduction in the biosynthesis of SeNPs using bacterial metabolite due to heavy metal cytotoxicity was analyzed by the colorimetric bioassay (SE Assay). The inhibition of selenite reduction and loss of red color in the presence of heavy metals may serve as a biosensor for heavy metal toxicity analysis. Thus, this biosensor development is aimed at improving the sensitivity and specificity of analytic detection.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3