Heterosis for Nitrogen Use Efficiency of Maize Hybrids Enhanced over Decades in China

Author:

Li RongfaORCID,Gao Julin,Li Yuanyuan,Yu Shaobo,Wang Zhigang

Abstract

The nitrogen use efficiency (NUE) of modern maize hybrids has been greatly improved, but for decades, little was known on whether the NUE heterosis of maize hybrids had increased. A two-year field study was conducted on eight maize hybrids and their parental inbred lines from the 1970s to 2000s under two N levels (0, 150 kg N ha−1). These were the most popular hybrids in China’s main maize-growing areas at the time. The results showed that the yield of the maize hybrids increased significantly at an average rate of 37.5% every 10 years. The evolution of NUE heterosis was mainly related to the increased kernel number per ear. The absolute NUE heterosis (AHNUE) and the mid-parent NUE heterosis (MPHNUE) of maize hybrids increased by 151.4% and 76.4% in the past four decades, or an average rate of 2.11 kg kg−1 and 19.1% every 10 years. Based on the coefficient of determination, the contribution of the mid-parent nitrogen internal efficiency heterosis (MPHNIE) to MPHNUE (43–57%) was significantly higher than that of the mid-parent nitrogen recovery efficiency heterosis (MPHNRE) (19–32%), indicating that the evolution of maize NUE heterosis was mainly derived from its NIE heterosis evolution. The increase of NIE heterosis in the past 40 years was closely related to the increased heterosis of kernel number per ear, the pre-silking N accumulation and the post-silking N remobilization. Therefore, the enhancement of maize NUE heterosis can be attributed to (i) heterosis improvement in post-silking N remobilization, which results mainly from greater heterosis in pre-silking N accumulation; (ii) heterosis improvement in carbon and nitrogen sink capacity, which exhibit as heterosis enhancement in grain yield and grain nitrogen concentration. To further improve yield and NUE, the pre-silking N and carbon accumulation and post-silking N remobilization should both continue to increase in maize breeding. Our results will provide new insights into NUE and help breeders select genotypes with both higher yields and higher NUE for the future.

Funder

the Science Foundation for Fostering Outstanding Young Scholars of IMAU

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3