Simulating the Impacts of Climate Change on Maize Yields Using EPIC: A Case Study in the Eastern Cape Province of South Africa

Author:

Choruma Dennis JuniorORCID,Akamagwuna Frank Chukwuzuoke,Odume Nelson OghenekaroORCID

Abstract

Climate change has been projected to impact negatively on African agricultural systems. However, there is still an insufficient understanding of the possible effects of climate change on crop yields in Africa. In this study, a previously calibrated Environmental Policy Integrated Climate (EPIC) model was used to assess the effects of future climate change on maize (Zea mays L.) yield in the Eastern Cape Province of South Africa. The study aimed to compare maize yields obtained from EPIC simulations using baseline (1980–2010) weather data with maize yields obtained from EPIC using statistically downscaled future climate data sets for two future periods (mid-century (2040–2069) and late century (2070–2099)). We used three general circulation models (GCMs): BCC-CSM1.1, GFDL-ESM2M and MIROC-ES under two Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, to drive the future maize yield simulations. Simulation results showed that for all three GCMs and for both future periods, a decrease in maize production was projected. Maize yield was projected to decrease by as much as 23.8% for MIROC, RCP 8.5, (2070–2099). The temperature was projected to rise by over 50% in winter under RCP 8.5 for both future periods. For both future scenarios, rainfall was projected to decrease in the summer months while increasing in the winter months. Overall, this study provides preliminary evidence that local farmers and the Eastern Cape government can utilise to develop local climate change adaptation strategies.

Funder

Deutsche Forschungsgemeinschaft

National Research Foundation

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference95 articles.

1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Pachauri,2014

2. Food for Thought: Lower-Than-Expected Crop Yield Stimulation with Rising CO 2 Concentrations

3. What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa?

4. Handbook on Adaptive Management Strategies and Options for the Water Sector in S. Afr. under Climate Change;Stuart-Hill,2012

5. Climate trends in southern Africa

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3