Neural Network Model for Greenhouse Microclimate Predictions

Author:

Petrakis Theodoros,Kavga AngelikiORCID,Thomopoulos Vasileios,Argiriou Athanassios A.ORCID

Abstract

Food production and energy consumption are two important factors when assessing greenhouse systems. The first must respond, both quantitatively and qualitatively, to the needs of the population, whereas the latter must be kept as low as possible. As a result, to properly control these two essential aspects, the appropriate greenhouse environment should be maintained using a computational decision support system (DSS), which will be especially adaptable to changes in the characteristics of the external environment. A multilayer perceptron neural network (MLP-NN) was designed to model the internal temperature and relative humidity of an agricultural greenhouse. The specific NN uses Levenberg–Marquardt backpropagation as a training algorithm; the input variables are the external temperature and relative humidity, wind speed, and solar irradiance, as well as the internal temperature and relative humidity, up to three timesteps before the modeled timestep. The maximum errors of the modeled temperature and relative humidity are 0.877 K and 2.838%, respectively, whereas the coefficients of determination are 0.999 for both parameters. A model with a low maximum error in predictions will enable a DSS to provide the appropriate commands to the greenhouse actuators to maintain the internal conditions at the desired levels for cultivation with the minimum possible energy consumption.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3