A Novel 10-Parameter Motor Efficiency Model Based on I-SA and Its Comparative Application of Energy Utilization Efficiency in Different Driving Modes for Electric Tractor

Author:

Cheng ZhunORCID,Zhou Huadong,Lu ZhixiongORCID

Abstract

To build a more accurate motor efficiency model with a strong generalization ability in order to evaluate and improve the efficiency characteristics of electric vehicles, this paper researches motor efficiency modeling based on the bench tests of two motor efficiencies with differently rated powers. This paper compares and analyzes three motor efficiency modeling methods and finds that, when the measured values in motor efficiency tests are insufficient, the bilinear interpolation method and radial basis kernel function neural networks have poor generalization abilities in full working conditions, and the precision of polynomial regression is limited. On this basis, this paper proposes a new modeling method combining correlation analysis, polynomial regression, and an improved simulated annealing (I-SA) algorithm. Using the mean and the standard deviation of the mean absolute percentage error of the 5-fold Cross Validation (CV) of 100 random tests as the evaluation indices of the precision of the motor efficiency model, and based on the motor efficiency models with verified precision, this paper makes a comparative analysis on the full vehicle efficiency of electric tractors of three types of drive in five working conditions. Research results show that the proposed novel method has a high modeling precision of motor efficiency; tractors with a dual motor coupling drive system have optimal economic performance.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3